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Steady uniform shear flow in a low density granular gas
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Fisica Teoica, Facultad de Fsica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
(Received 8 October 1996

The steady uniform shear flow of a low density granular sytem is studied by means of a kinetic model
equation and also by direct Monte Carlo simulation of the Boltzmann equation. The former can be exactly
solved for arbitrary shear rate and dissipation. Explicit expressions for the one-particle distribution function
and the pressure tensor are obtained. Comparison of the results with those of previous theories is presented in
the appropriate limits. The simulation shows that the model reproduces fairly well the values of the stresses
and, in particular, the phenomenon of normal stress differences. The agreement is also very good for the
velocity distribution function in the thermal velocity region, although significant discrepancies appear for large
velocities.[S1063-651X%97)12803-3

PACS numbgs): 05.20.Dd, 47.50td, 47.20-k

[. INTRODUCTION gions of low density12—-15, and inelastic collapsgL3].
The reasons mentioned above indicate that it is instructive

The development of kinetic model equations describingo consider simple model kinetic equations of inelastic gases
the dynamics of particles, which collide inelastically, seemswhich allow controlled and detailed analysis. Kinetic models
to be an important step towards the understanding of thbave proven to be very useful in the study of far from equi-
complex phenomena taking place in rapid granular flowdibrium states of dilute molecular gas¢46]. For many
[1-3]. Nevertheless, the nonconservation of energy in colli-physical situations, exact solutions to the models have been
sions introduces quite drastic changes in the physics of thderived, and comparison with numerical solutions of the ex-
problem, and the generalization of the existing theories foact equations obtained by computer simulation shows a fairly
ordinary fluids is far from being an easy task. This refers togood agreement. Very recentl], two kinetic models for
both the own derivation or proposal of a kinetic equation forsystems of inelastic hard spheres have been proposed. Both
the distribution function of the system and also to solving themodels are formulated as approximations of the revised En-
equation to obtain consistent hydrodynamic-like equationskog equation, but with different quantitative accuracy. Here
describing the macroscopic evolution. Although a hydrody-we will consider the limit of low densities and large length
namic description, in terms of the density, the macroscopiscales as compared with the diameter of the particles. In this
flow velocity, and the granular temperature is suggested biimit, the two models lead to the same equation, and become
analogy with normal fluids and also by experiments anda kinetic model of the Boltzmann equation for inelastic hard
computer simulations, a derivation from a more fundamentaparticles.
description of the system is needed. Most of the simplest far from equilibrium physical situa-

In the last years, several kinetic equations for the onetions correspond to steady states. In this paper, we study an
particle distribution function of rapid granular flows have unbounded, steady, and uniform shear fl@&H. While in
been proposed, extending the heuristic arguments leading taolecular fluids such a state is not possible due to viscous
the Boltzmann and Enskog equations for ordinary gasebeating, in granular fluids this effect can be balanced by
[4-7]. In addition, a more basic approach to the problemgdissipation in collisions. The simplicity of the model allows
starting from the Liouville equation, has been presef8d us to obtain the exact solution describing the steady USF and
Nevertheless, even if it is assumed that these equations aadso all the physically relevant quantities. This is done with-
relevant to the description of rapid granular flows, a funda-out introducing any expansion in the gradients or in the in-
mental difficulty arises. The standard procedure of obtaininglasticity of collisions. The results for the pressure tensor
solutions to kinetic equations is by means of the Chapmanshow anisotropy, i.e., normal stress differences.
Enskog method9], in which an expansion in the gradients It must be noted that our approach is quite different from
of the hydrodynamic fields is carried out. For molecular flu-others, in which a specific form is assumed for the one-
ids, the reference state about which gradients are considerg@article distribution function describing a given state. For
is the Maxwellian local equilibrium distribution. The corre- instance, in the theory by Jenkins and Richrpad] a gen-
sponding reference distribution for inelastic particles is com-eralized Maxwellian is conjectured to model the distribution
plex and has not been determined to date. As a consequendenction of the steady USF. The velocity-independent coef-
the limit of small dissipatior(i.e., the coefficient of restitu- ficients are identified through the balance equation for the
tion « close to ] is usually considered. Nevertheless, manysecond order fluctuating velocity correlation tensor. This
of the phenomena peculiar to rapid granular fluids are clearlyheory, which in principle also keeps all orders in the shear
associated to nonlinear and rheological effects and to natte and dissipation, leads to normal stress differences which
very small dissipation. This includes properties such as sigare in good agreement with the results of molecular dynam-
nificant normal stress differences under sh¢2y10,11, ics simulations. On the other hand, the model we use has
spontaneous formation of dense clusters surrounded by réeen formulated for arbitrary conditions, and no specific ap-
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proximation is introduced to apply it to the steady USF. To - R .
obtain the one-particle distribution function one has to solve jB[r1,V11t|f(t)]=0d_1J deJ do0(g-0)(9-0)
the kinetic model equation under the appropriate conditions.

Another interesting approach to the same prob[&i8] X[a™?f(ry,vq,0)f(ry,vy,t)
has been carried out by expanding the Boltzmann equation to VDV )] @
Burnett order. The perturbative expansion method is specific S 12t
for the steady USF, and it is based on the observation that ipn the above expressiom is the unit vector pointing from
this state the ;hear rate ;cales\ﬁs wheree=1— 0‘2'_ The  the center of particle 2 to the center of particle 1 at contact,
theory results in a prediction for the normal stress differenceg) is the Heaviside step functiog=v; —v,, and
which are very close to those of Jenkins and Richman, when

the latter are expanded to the same order of approximation. ) 1+a . .
The direct Monte Carlo simulation meth¢di9] was de- Vi=vi— —_—(g-0)o, (€)
velopped to obtain numerical solutions to the Boltzmann
equation, and has been successfully applied to a great variety 14a . .
of situations. Since it is formulated for an arbitrary scattering Vo=Vo+ ——(g-0)o (4)

. - ) A 2
law, there is no difficulty in using it to study granular flows “

[20]. Here we present results obtained for the steady USFare precollisional velocities leading after collision to veloci-
and compare them with the predictions of the model kinetigiesy, andv.,.
equation. For the components of the pressure tensor the The local particle number density, flow velocity u, and

agreement turns out to be very good over a wide range ofemperaturel are defined in the usual way,
values of the coefficient of restitution. Regarding the one-

particle distribution function, the agreement is only semi-

guantitative. This is not surprising, since the detailed Boltz- n(r,t):f dvi(r,v.b), ©)

mann collision operator is replaced in the model by a much

simpler effective term, which is determined by the second

moments of the one-particle distribution. n(r,t)u(r,t):f dvvi(r,v.0), ®)
The structure of the paper is as follows. In Sec. Il the

model is briefly discussed, and the basic equations are pre- L )

sented. In addition, a further simplification to the formulation En(r't)kBT(r’t):J dvamlv—u(r, )7 (r,v,t).  (7)

in Ref.[8] in introduced. It consists of an evaluation of the

dissipation source term in the local equilibrium approxima-From Eg. (1) the following evolution equations for these

tion. We believe this is consistent with the spirit of the fields are easily obtained:

model, and makes the calculations much simpler. The model

kinetic equation is particularized for the USF in Sec. lll, and

the steady pressure tensor is computed in Sec. IV. The results

are compared to the theories of Jenkins and Richfah

and of Sela, Goldhirsch, and Noskowif28]. Section V du .

deals with the one-particle distribution function, which is —¢ Tu-Vu+(nm)—2V.P=0, ©

also compared with the above theories in the low dissipation

limit. In Sec. VI we discuss the Monte Carlo simulation re- ¢ JT d

sults and, finally, Sec. VII provides a short summary and EnkBEJF§nkBU-VT=—(VU)IP—V'q—(l—aZ)w,

conclusions. (10)

an
E+V-(nu)=0, (8)

where
Il. BASIC EQUATIONS OF THE MODEL
) ) _ i P(r,t)=f dvm(v—u)(v—u)f(r,v,t) 1y
We consider a gas of identical smooth disks=(2) or
spheres = 3) of diameters and massn, whose collisions
are characterized by a constant coefficient of normal restitu
tion « in the interval (0,1. The Boltzmann equation for the m
one-particle distribution functiorf,(r,v,t), is[7,8] q(r,t):J dvi(v— u)f(r,v,t) 12

is the pressure tensor,

is the heat flux, and

w(r,t)=m‘::1f dvlf dvzf doO(g- o)

where 7 is the (inelastig Boltzmann collision operator X (g- &)3f(r,v1,t)f(r,v2,t) (13

J
E"‘Vl'vl)f(rlavlyt):jB[r11V11t|f(t)]a (1
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is a source term describing the rate of dissipation in colli- mo9-1 . .

sions. o(r,t)—w(rt)=—g f dVlf def doO(g-0)
Solving Eq.(1) for a given situation is a formidable task.

Even in the case of ordinary gases, very little is known about X (g- 0)3f,(r, vy, ), (r,vs,t)

solutions of the Boltzmann equation for far from equilibrium

states, and the presence of dissipation complicates in a non-

trivial way the structure of the Boltzmann equation. The sim-

plest physical situation one can think of for a granular fluid is

the so-called homogeneous cooling stat#s), for which In summary, our model kinetic equation is given by

the system is uniform and the time dependence occurs en- 5 1

tirely through the temperature. Although it has been shown | 2 T I )

[7,21] that Eq.(1) admits a solution describing such state, the | gt v V) f=—w(f=1) nkgT fip(V)(1=aSer.

exact form of the distribution function is not known. For (18

these reasons, it is worth looking for model kinetic equation

similar to those which have proven to be so fruitful for or-

dinary fluids[16]. The basic idea is to replace the Boltzmann X ) -

collision operator with a simpler form, while preserving the SCUrce termw is replaced by, . In the elastic collision

essential properties of the exact equation. limit, the kinetic model reduceg to the well-known
Very recently[8], a kinetic model along the lines sketched Bhatnagar-Gross-KrookBGK) equation[23].

above has been proposed. The Boltzmann collision operator APPlication of Eq.(18) to the HCS is very simple. The

is separated into two parts: one in the velocity subspacgf!ution is given by a Maxwellian with a time dependent

spanned by 1y, andv?, and the other one in the subspace'u?mperature. The time evolution of this latter quantity is

orthogonal to it. The first contribution is retained exactly, 91V€n Py Eq.(10), which for the HCS has the solution

while the second one is approximated by a single relaxation

time term. This guarantees that the balance equati@nrs T(t)=T(0)

(10) are preserved by the model and that the fluReand

g, and also the source tenw are the same functionals of the with

distribution functionf as in the Boltzmann equation, i.e.,

they are given by Egq911)—(13). Since the details are de- . d—1

scribed elsewherf8,22], we only give the result here. The ty =(1—6¥2)T0d 1n<

Boltzmann collision operator is replaced by

T 1/2
=(d— 1)(5) n2c? (kg T)"2 (17)

sl'rivially, this equation also leads to the balance equations
(8)—(10), with the only difference that in the last of them the

-2
: (19

1+ t
to

kg T(0)
m

1/2
) . (20

As we have already mentioned, the exact solution of the
Boltzmann equation for the HCS is not known and, in par-
ticular, it is easy to check that it is not a Maxwelligexcept

in the elastic limit, #=1). Nevertheless, both theoretical
studieg 7,21] and Monte Carlo simulationi20] have shown
that deviations from Maxwellian are quantitatively small for
where we have introduced the peculiar velodity: v—u, thermal velocities and Eq19) provides a very accurate ap-

proximation for the time evolution of the temperature.

Jg— —v(f=1)) V)(1-adw, (14

_nkBTf"’b

2

mu Ill. UNIFORM SHEAR FLOW
Yy = -1 (15
B We want to study the uniform shear flaySP, which is
characterized by a constant linear velocity profile
andf, is the local equilibrium distribution, u(ry=a-r (21)

a2 > where a;j=adi«djy, a being the constant shear rate. For
exd — mVA(r,t) simplicity we consider an unbounded system. In addition, the
2kgT(r,t) | heat flux vanishes and the density®) and temperature
(160 T are uniform. For this flow, Eqg8), (9), and(10) imply
that the density is constant in time, the pressure tensor is
uniform, and the temperature obeys the energy balance

m
f|(r,v,t)=n(r,t)[m

Also, v[n(r,t),T(r,t)] is an effective local collision fre-
quency, specified in more detail below. d o aT® ) > (0)

The model defined by Eq14), although much simpler 5N Ke ot =—aPy —(1-a%o . (22
than the original Boltzmann equation, is still too complicated
to allow exact calculations in most of the applications. This.
is due to the nonlinear functional dependencewobn the This equation clearly shows the quite different behavior
distribution function. Then, we go a step further in the sim-of elastic and inelastic fluids under shear. While for molecu-
plification, and approximate by its local equilibrium value, lar fluids the USF is always a time-dependent state whose
ie., temperature increases monotonically in time due to viscous
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heating, in granular media the variation of the temperature IV. PRESSURE TENSOR
arises from the balance of two opposite effects: viscosity and _ . . .
dissipation in collisions. As a consequence, a steady state is By multiplying Eq.(26) by V;V; and integrating ovey, it
possible when both effects cancel each other. Our aim in this straightforward to obtain the evolution equations for the
following will be to analyze such a state. It is worth men- components of the pressure tensor in the USF,
tioning that sheared granular media posses multiple steady
states, depending on the initial and boundary conditji@a$ — PV +a, PR +a P = — v O(P{Y - 5;p®)
Here we restrict ourselves to the USF as described above,
assuming that the system has reached such a state, and with- 2
out paying any attention to its stability. A detailed analysis of -5 %i(1- a®)wl”, (29
these questions will be published elsewhere.

Let us introduce position and velocities coordinates with
respect to a frame moving with the flow velocity We
define the Lagrangian coordinates by

where p=3%,P;; /d=nkgT is the hydrostatic pressure. For
a=1 we recover the equations for an ordinary gas under
USF in the BGK approximation, which have been exten-
sively studied 25-27. From Eq.(29), in particular, one ob-

R=A(t)-r, V=v-a-r, (23 tains
where P 2
P O=—gaPy— 5 (1—a2)w|(0), (30)
Aij(t)=5ij—aijt. (24)
J
In terms of these, E(18) becomes _p;?/): —aP@— v<°)P§?, (31)
of ALV of v of
URSIET=Y iiVigy. 17 2
1
=—V(f—f|)—mf|1/f(l—a2)w|. This closed system of equations has the trivial solution
B

xy
an asterisk, is given by
Since the USF is macroscopically homogeneous in the 2 *
Lagrangian frame, we expect the associated distribution p* :_i[ *__(1_az)“’_l} (33)
function, f(9), to have the same property, i.e., to be indepen- * d v*
dent of R. Therefore, Eq(25) reduces to

25 P)=P{)=p©@=0. A second steady solution, denoted by

*

14
ot © ot(© 1 Pyy=" & P (34

v OO0y T (0,0
a AVigy = T ey o Y

*

a2 W)
(1 a)y

X(1-a?)w!?. (26) = —(1-a®)w=0. (35

This equation implies that For given values of the shear rade the number density

©) n, and the restitution coefficient, Eq. (35 determines the
Vi) — a5, (V) 27 value of the pressuréor temperatureat which the steady
at pATYE state is possible. It is convenient at this point to specify the
form of the effective collision frequency. Dimensional
where the angular brackets denote averaging with respect smalysis requires that
f. Therefore, if the initial state verifigd/)(®)=0, this prop-
erty is kept in time by Eq(26). In the following we will limit B d—1
our consideration to initial conditions of this kind. This is the v=Ccho
reason why, for velocities in the Lagrangian frame, we used
the same symbol as for the peculiar velocities introduced inwherec is a dimensionless constant. We are going to fix this
Sec. II. Then the local equilibrium distribution appearing in by requiring that the model gives the corré&oltzmann
Eq. (26) has the form value for the Navier-Stokes shear viscosity in the elastic
limit «=1. This leads toc=16/%, with b=1.016, for
O s 51— a(0) m a2 mV? d=3 (spheres andc=2/b, with b=1.022, ford=2 (disks
fi(V,t)=n 2mkg TO(1) ex T 2kgTO(L) )’ [28]. When Eq.(36) is used in Eqs(33)—(35) they reduce to
~ [(1—a2)(d—1){ 2(d—1)
y

1/2

. : ) . Py= (1-a?) ,
with all the possible time dependence occurring through the c dc

temperature. (37)

- (36)

7TkBT> 12

(28)
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_ Ex 2(d—1) they have been calculated using the BGK md@dl. There,
Pyy=— R g (1-a?), (38)  differences betweeR,, and P, but not betweerP,, and
a ¢ P,, were found.
As we have already mentioned, an approximated theory
~ dd-1)(1-a? for the steady USF of smooth inelastic disks has been for-
T =go= 2(d—1)(1—a?)" 39 mulated by Jenkins and Richméh7]. Their results for the
second velocity moments in the low density limit read, in our

We have introduced the dimensionless pressure teﬁ§0r notation,
and shear rata in the steady state as

(1+ a)(1—a?®)(7—3a)?

=(IR)2_
- Pf _ a a cA(9+7a) ’ (46)
Pij:p_*’ a=v—*. (40)
PRY=- [(O+7a)(1-@)]"%  (47)
Equation(39) shows that in the steady state the ratio of 25-9a
the shear rate to the collision frequency depends only on the
restitution coefficient. The simple dependence of the presure BER) _ Ot 7a (49)
tensor on the shear rate found here contrasts with the com- W 25-9a’
plex one found in the time-dependent uniform shear flow of
ordinary gasef25—-27). Let us suppose we carry out a series =r 41— 25« 49
of experiences, all of them in the same system, i.e., with XX T 25_Qq " (49)

given values ofa and n, but with different values of the

shear rate, measuring the shear viscosity in the steady state. Although these expressions may appear rather different
Taking into account that Eq39) implies thatT*«a?, it  from the corresponding results obtained from our model ki-
follows from Eg. (37) that the generalized shear viscosity netic equation, Figs. 1 and 2 show that the discrepancies are

7* is linear in the shear rate, quite small for low dissipation, and tend to vanish when
approaches unity. Let us also mention that recent molecular
P;y dynamics simulationg24] have found that the values of the
7*(a)=— ?oca. (41) steady temperature for a dilute gas of inelastic disks can be
closely fitted by an empirical relation, which in our units
Of course, the proportionality constant in this expression de[eads
pends on the coefficient of restitution. 16Ac2[ 1
The other components of the pressure tensor are easily A 2= ( >+B], (50)
computed by means of EQ9), particularized for the steady T \l-a

state. One obtains with A=0.080 andB= —0.54. The above expression has the

2(d—1)2(1— a?) same functional dependence on the restitution coefficient as

EXX: 1+ , (42  EQq.(39. In addition, from this latter equation one identifies
dc A=0.100 andB=—0.511, which are surprisingly close to
] ] the simulation values, taking into account that no excluded
and, for a three-dimensional system, volume effects are considered in our model, and also that the
- ~ - ~ flow observed in Ref[24] is highly nonuniform and it ex-
P, =Pyy, Px;~Py,=0. (43 hibits time-dependent microstructures.

. Sela, Goldhirsch, and Noskowif28] carried out a study
Let us note that the reduced pressure tensor in the steagf a two-dimensional granular USF to Burnett order using
state is expressed as a functioncfalone, being indepen- the Boltzmann equation. They arrived at expressions for the

dent, in particular, of the applied shear rate. Then, for insteady temperature and the pressure tensor of the forms
stance, for the normal stress ratios we have

a?=C(1-a®)+D(1-a?**+0(1-a?? (51
Pi dc+2(d—1)%(1—a?)

P~ de—2(d-1)(1-ad) ' 49 Py=E(1=a®)¥*+0(1-a®)*", (52
- Py=1+F(1—a?)+0(1-a?)? (53)
=1 (45)
* . ~
P22 Pyy=1+G(1-a®)+0(1-a?)?2 (54)

Therefore, the model predicts anisotropy of the diagonaHere C, D, E, F, and G are dimensionless constants. In

terms of the pressure tensor in the shear plane, but not in thEable | we compare the values for these constants given in
plane perpendicular to the flow. The existence of normaRef.[18] with those obtained by expanding the expressions
stress differences in shear flows of normal fluids is very wellderived in this section. Also given are the results obtained
known. It is a viscometric effect which appears beyond thefrom the expansion of the Jenkins and Richman theory. The
Navier-Stokes approximatiof29]. For a low density USF values from the three theories are very close and, in particu-
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14p ]

FIG. 1. Reduced shear ra@eas a function of
08 the coefficient of restitutiona for a two-

- dimensional steady USF. The solid line corre-
sponds to the present theory, and the dashed line

06 ] to that of Jenkins and Richman.

04| 1

02} ]

lar, the agreement between our results and the Burnett ex- b Qe
pansion of the Boltzmann equation is excellent. S= fodt (L) (56)

V. VELOCITY DISTRIBUTION FUNCTION ) o )
is a measure of the average number of collisions per particle

The formal solution of Eq(26) can be written as between 0 and, s’ =s(t'), and expta;; V;(d/4V;)]is a shift
operator in velocity space,

J
fOV t)=e et Vit O(Vv,0)
e'@iVilNip(Vv)y=h[A(—t)-V]. (57)

t
+f dt/ef(Sf3’)e(t*t’)aijvj(dlﬁvi) V(O)(tr)
0

Of course, the time-dependent temperature in &&)

(0) N1 — 22 e (Dt must be consistently calculated, i.e., it is given by the solu-
vV ae )} tion of Eqs.(30)—(3%/). Let us now considgr the Igng time
limit of f(O(t). Assuming that the steady state discussed in
Sec. IV is reached, we know that the temperature tends to the
constant value given by Eq39), ands diverges. The con-
where clusion is thatf(9(V,t) approaches the steady form

- nOkTO(t)
X fO(V,t'), (59

FIG. 2. The pressure tensor for a two-
dimensional steady USF. The solid lines corre-
spond to the present theory, and the dashed ones
to that of Jenkins and Richman.

0 0.2 0.4 0.6 0.8 1
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TABLE I. Comparison of the values of the coefficients in ex-
pansions given by Eq$51)—(54) obtained with different theories

and in the present work.

Sela, Goldhirsch,

Model and Noskowitz Jenkins and Richman
C 0.511 0.511 0.522
D 0 0 0
E -0.714 -0.714 —0.707
F 0.511 0.522 0.5
G 0.511 0.522 0.5

f* (V) — Jocdt e* V*tetaijvl'(t;/('/vi)
0

X| = e (V)= @)t V),
(58)
with
yr (V)= %—1. (59

It can be checked that this expression reproduces the values
of the steady pressure tensor found in Sec. IV, and also that
it gives a vanishing heat flux. Now we introduce dimension-

less quantities by

- 2kBT* -1/2
v:( o ) v, (60
~ 1 [2kgT*\%?
f:W - f*. (61)
Then Eq.(58) reduces to
(V)= w‘dlZdes o SeSaVy(717Y)
0
d-1(2~ =
X 1—T<aV2—1)(1—a2) e V? (62

where use has been made of E(s?) and(36). In the case

of a system of hard spheres, the marginal distribution for thelistri

z component of the velocity is easily obtained,

TW= | %[ dVi@)-a
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3c
2(1-a?)

kgT*

m

v§>[ +1 : (64)

and, therefore, the distribution function is positive in all the
range of thermal velocities, even in the linait-0. It is then
possible that Eq(62) provides an accurate approximation of
the solution of the Boltzmann equation in all the relevant
region of the distribution function. This point will be ana-
lyzed in detail in Sec. VI.

The marginal velocity distribution in the shear plane, also
ford=3, is

Fry(Vi,Vy) f :dT/Z?(\'?)

o0 ~ o 2 ~9
— ﬂ_flf ds efsef[(v)ﬁs avy) +Vy]
0

_ 2 - - -
x(l—%[(vxﬂ’évy)zwﬁ] .
(65)

In order to compare with previous theories, we have carried
out a perturbative expansion df for d=2 in powers of
1—a?. The result is

V2sin26
Jc

+(1—2V2+V2c0s20+ V4 — LV4cos4d)

TV)=mte V) 1- (1—a?)}?

1-a?

Cc

X +0(1— a2)3/21, (66)

Here, we have introduced a polar representation for the ve-
locity, V(V,6), where 6 is measured with respect to the
streaming directiorx.

Jenkins and Richmafl7] assumed that the steady distri-
bution function has the form of a generalized Gaussian,

FOR—

exp(—V-K 1.V, (67)

mIK|

whereK is a matrix which accounts for the anisotropy exist-
ing in the USF. When the low density limit of the above
bution is considered and the result expanded to order
(1— «?) one obtains

V2sin26

V2

’f"(JR)(\’?): 7_r71ef\72 1 (1— a?)12

2(1—a?) ~ ~ +(1—2V2+ 2V2c0s20+ 2V4— LV4cos4d)
X 1—(—)(2v§—1) e Vi (63 ( 2t
3c 5
_ _ o o X +0(1—a?)%?|, (68)
This expression shows a limitation of our model kinetic 4

equation, namely, that the distribution function takes un-

physical negative values for large enough velocities. Neverlf we neglect the difference between(~1.96) and 2, both
theless, the velocity values for which E&3) is negative are expressions agree to order {k?)Y2 The terms of order
given by (1— a?) have the same dependence on the velocity modulus
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0.5 > T T T T T
ao=; ks
L a=0.0 + |
0.45 -, a=0.25 e
a=0.1 x
04 ]
0.35 -
0.3 . FIG. 3. Time evolution of the reduced shear
o L x X rate a for «=0.8, and different values of the
@ 0.25 x X 7 shear ratea. In all cases, the initial distribution
0.2 ] was homogeneous with a Maxwellian velocity
’ distribution in the Lagrangian frame. Time is
0.15 i measured in units of(2/7»(0)) L.
0.14 e ]
X
0.05} x :
0 L 1 1 1 1
0 50 100 1 ?0 200 250 300

and also or¥, but all the constant prefactors differ. In spite of the Boltzmann equation for molecular fluids. Very re-

of this difference, let us notice that both expressi@® and  cently, it has also been applied to study the HCS of a low

(68) make the same contribution to the diagonal part of thedensity granular flow20]. Since the details of the method

pressure tensor when the constaiig again approximated by have been extensively discussed in R&€], they will not be

2. This can be verified by a direct calculatieee also Table given here.

). We saw in Sec. lll that the distribution function for the
The distribution function for the USF of a two- USF becomes homogeneous in the Lagrangian frame. The

dimensional granular gas has also been calculated at theonsideration of homogeneous states allows a great simplifi-

same order by Sela, Goldhirsch, and Noskowitz in RES). cation of the simulation. Therefore, we have carried out the

There, a much more complicated dependence on both polaimulation in the Lagrangian frame and restricted ourselves

components of the velocity is found. By comparing with Jen-to solutions of the Boltzmann equation which stay homoge-

kins and Richman results, the authors conclude that the comeous in that frame. In other words, we numerically solved

stants appearing as prefactors for the second harmonics the equatiorfcompare with Eq(26)]

0 in Eqg. (68) can be considered as rough averages of the

corresponding functions obtained by them. We refer the £0) £0)

reader to their paper for details. J —a,V

= Je[VIF©]. (69

ot 1oV,

VI. DIRECT MONTE CARLO SIMULATION

The direct simulation Monte Carlo method9] has Of course, this implies that the possibility of spontaneous
proved to be a very useful tool to obtain numerical solutiondormation of spatial inhomogeneities is eliminated in the

0.7 T T T T T T
0.6 | .
05t ' .
<
04l 4 FIG. 4. Steady reduced shear ratas a func-
S tion of the coefficient of restitutioa for a dilute
system of hard disks. The solid line corresponds
03} ° T to the kinetic model, and the symbols are results
from the Monte Carlo simulation.
0.2} N .
01} ' .
86s 07 0B 08 _ 08 08 0% 1
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1.6 T T T T T T

FIG. 5. The same as in Fig. 4 for the reduced
pressure tensde;; .

0.65 0.7 0.75 0.8 o 0.85 0.9 0.95 1

simulation. Our aim here is to study the properties of the In Fig. 3 we present the time evolution aEa/v(t) for
homogeneous steady state. Its stability will be analyzed elsex=0.8 and four different values of the shear rate, namely,
where. a=0.1, 0.25, 0.5, and 1. Time is measured in units of
For homogeneous systems there is no need to split the(2\/7»(0))~*, where »(0) is the initial collision fre-
system into cells and, consequently, the spatial coordinataguency. After an initial transient period, all curves converge
of the particles do not play any role in the simulation. Into the same steady value, as predicted by(B§).. The same
addition, no boundary conditions must be introduced. In ougualitative behavior has been found for all the reduced com-
simulation we have considered a three-dimensional systemponents of the pressure teng®j(t)/p(t). Therefore, in the
The number of particles i8l=1000, and the results have following we will concentrate on the dependence of the
been averaged over 500 different trajectories. The time intersteady values of the reduced quantities on the restitution co-
val At over which it is assumed that free motion, including efficienta, once we have checked they do not depend on the
the effect of the inertial force, and collisions, are uncouplecshear rate.
has been takerb‘tz0.0ZS/gl, where vo=(2/7/c)v(t), The results obtained for the steady reduced sheararate
with v(t) being the instantaneous value of the collision fre-for different values ofa are shown in Fig. 4. The statistical
guency given by Eq36). We considered a nonconstant time errors are smaller than the symbols used to represent the
step in order to guarantee that it always remains muclilata. Also plotted is the prediction of our model kinetic
smaller than the average time between collisions, in spite oéquation, i.e. Eq(39) with d=3. It is seen that the agree-
the change of the temperatyr@0]. The initial velocity dis- ment is remarkable at low dissipation, although the discrep-

tribution in all cases is a Maxwellian. ancy increases as the restitution coefficient decreases. We

0-7 T T - T T

0.6} 8

05} J

04+ . FIG. 6. Marginal velocity distribution func-

s tion in the direction perpendicular to the shear

03 plane. The symbols are simulation data, and the

=T i solid line corresponds to the model kinetic equa-
tion. The restitution coefficient i&=0.8.
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0.4 T T T T
0.35
03}
0.25 L FIG. 7. Marginal velocity distribution in the
shear plane. The symbols are simulation data, and
& ozl the solid lines results from the kinetic model. The
' distributions are shown V¥, for three different
015 given values ofV,, namely, V,=0.019, 0.75,
’ and 1.37, from top to bottom. The coefficient of
restitution ise=0.8.
01}
0.05 -
0
-3

have verified that all the numerical data are fitted if one takedet us note that the relative normal stress differences in this
c~2 in Eq. (39). Therefore, it is tempting to conclude that plane are about 3% faz= 0.7, and that they decrease as the
the functional form given by the model is correct, and thatrestitution coefficient increases. We conclude that the model
the observed discrepancy follows from the value given to th&inetic equation we are considering gives a fairly good ap-
constant in the collision frequency. Our choice emphasizeproximation of the pressure tensor for a granular dilute gas
the role of the shear viscosity. In Fig. 5, we present theunder steady USF.

measured values for the components of the pressure tensor Let us now check at what extension the above conclusion
and compare them to the model expressions, B81, (38), also holds for the velocity distribution function. We have
(42), and (43). The theory reproduces very well the resultsverified that, once the steady state has been reached, the
for the normal stres®,, and the shear stres%(y. On the shape of the distribution is determined only by the coefficient
other hand, the simulation shows that there is anisotropy i®f restitution, according to the predictions of the model. Fig-
the plane perpendicular to the flow_velocity, beingure 6 depicts the marginal distribution(V,) for «=0.8.
P,.>Py,, while the kinetic model leads tB,,=P,,. The  The agreement is quite good in the velocity range shown,
same kind of anisotropy has been found in molecular dynamalthough a discrepancy is observed in the height of the maxi-
ics simulations of shear flows at low density, although themum atV,=0. In addition, the agreement becomes much
inequality changes in sign at high densitigisl,31). It is  worse if larger velocities are considered. In fact, one cannot
observed that the theoretical values are in between the twexpect a single relaxation approximation to be able to accu-
numerical ones, as expected for consistency. Neverthelesgtely describe velocities beyond the thermal region, since

0.4 r T T T

0.35

0.3

FIG. 8. Marginal velocity distribution in the
shear plane. The symbols are simulation data, and
the solid lines results from~the kinetic model. The
distributions are~shown V¥, fgr three different
given values ofV,, namely, V,=0.019, 0.75,
and 1.37, from top to bottom. The coefficient of
restitution isa¢=0.8.
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the evolution of the distribution function is given in terms of Comparison with the simulation data shows that the
only the first five moments. The same comment applies tanodel describes fairly well the dependence of the pressure
the results presented in Figs. 7 and 8. There, the marginaénsor, including the normal stress differences, on the coef-
distribution functionf,,(V,,V,) is plotted as a function of ficient of restitution. Regarding the complete velocity distri-
V, for several fixed values 6f, and as a function o, for  bution, the model gives accurate results for small velocities,
fixed values olV, , respectively. Again, all distributions cor- but significant discrepancies appear in the high-velocity re-
respond to=0.8. ltis C|ear|y observed that the asymmetry giOﬂ. This is consistent with the expectation that a BGK-like
of the distribtion function increases as the distance from thénodel is a good approximation of low moments of the dis-
absolute maximum increases. tribution, but fails for high moments. Let us note that any
perturbative approximation of the Boltzmann equation for a
nonequilibrium situation is also expected to break down for
large enough velocities.

The steady state of USF for a low density granular flow  Finally, let us mention that the work presented here can
has been studied by means of a kinetic model, and also biye extended in both aspects, modeling and simulation, to the
using the direct Monte Carlo simulation technique. Therevised Enskog equatidi8], where many of the phenomena
simple form of the collision term in the model allows the mentioned in Sec. I, and that occur at higher density, can be
construction of an exact explicit analytical solution, without studied. Also, the very interesting problem of the stability of

restriction to small shear rate or low dissipation. Thereforethe steady USF state considered here and the possible exist-
no other scale separation than those implicit in the own kience of other steady states can be addressed.

netic equation is assumed. To Burnett order, the results for
the pressure tensor are very close to those recently derived
by expanding the Boltzmann equation for a system of hard
disks[18]. They also agree with the predictions of the Jen-
kins and Richman theofyd 7], which is based on the hypoth- This research was partially supported by Grant No. PB96-
esis that the distribution function can be written as a gener9534 from the Direccio General de InvestigaagicCientfica
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